Fractional order sliding mode controller design for antilock braking systems
نویسندگان
چکیده
Antilock braking system (ABS) is a highly nonlinear system including variation and uncertainties in the parameters due to changes in vehicle loadings, road condition, etc. It is a difficult task to design an ideal controller for ABS. In this paper, a novel robust controller named fractional order sliding mode controller (FOSMC) is proposed for ABS to regulate the slip to a desired value. The proposed FOSMC proportional-derivative (FOPD) sliding surface is adopted. FOSMC can not only deal with the uncertainties in ABS system but also track the desired slip faster than conventional integer order SMC with proportional or proportional-derivative sliding surface. Experimental results demonstrate the effectiveness of the proposed method. Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.
منابع مشابه
Observer Based Fuzzy Terminal Sliding Mode Controller Design for a Class of Fractional Order Chaotic Nonlinear Systems
This paper presents a new observer based fuzzy terminal sliding mode controller design for a class of fractional order nonlinear systems. Robustness against uncertainty and disturbance, the stability of the close loop system and the convergence of both the tracking and observer errors to zero are the merits of the proposed the observer and the controller. The high gain observer is applied to es...
متن کاملFractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition
In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depend...
متن کاملDesign of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System
A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...
متن کاملDesign of A No-chatter Fractional Sliding Mode Control Approach for Stabilization of Non-Integer Chaotic Systems
A nonlinear chattering-free sliding mode control method is designed to stabilize fractional chaotic systems with model uncertainties and external disturbances. The main feature of this controller is rapid convergence to equilibrium point, minimize chattering and resistance against uncertainties. The frequency distributed model is used to prove the stability of the controlled system based on dir...
متن کاملSelf-learning fuzzy sliding-mode control for antilock braking systems
The antilock braking system (ABS) is designed to optimize braking effectiveness and maintain steerability; however, the ABS performance will be degraded in the case of severe road conditions. In this study, a self-learning fuzzy sliding-mode control (SLFSMC) design method is proposed for ABS. The SLFSMC ABS will modulate the brake torque for optimum braking. The SLFSMC system is comprised of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 111 شماره
صفحات -
تاریخ انتشار 2013